Jak Używać Variables i XCom w Apache Airflow?

Mówi się, że Apache Airflow to CRON na sterydach. Zdobywa uznanie wśród narzędzi do orchestracji ETL’i. Harmonogramowanie, zarządzanie i monitorowanie zadań mu nie straszne. Podstawowym sposobem definiowania zadań są acyklicze grafy skierowane (DAG). Zadania w nich muszą wymieniać się informacjami. We wpisie dowiesz się jak używać Variables i XCom w Apache Airflow.

Czytaj dalej Jak Używać Variables i XCom w Apache Airflow?

Czytelny Kod Scala w Apache Spark (4 podejścia)

Jupyter i Apache Zeppelin to dobre miejsce na eksperymentowanie z danymi. Niestety, specyfika notebook’ów nie zachęca do organizacji kodu, a w tym jego dekompozycji i czytelności. Możemy przekopiować komórki do Intellij IDEA i zbudować JAR’a, ale efekt będzie taki sobie. W artykule dowiesz się jak napisać czytelny kod Scala Apache Spark w Intellij IDEA.

Czytaj dalej Czytelny Kod Scala w Apache Spark (4 podejścia)

Analiza danych z Twitter dla leni w Elastic Stack (Xbox VS PlayStation)

Dane z Twitter można pozyskać na wiele sposobów, ale komu chce się pisać kod 😉. Szczególnie taki, który będzie działał 24/7. W Elastic Stack można w prosty sposób zbierać i analizować dane z Twitter’a. Logstash ma gotowe wejście do zbierania strumienia tweet’ów. Kafka Connect omawiana w poprzednim artykule również ma taką opcję, jednak Logstash może wysyłać dane do wielu źródeł (w tym do Apache Kafka) i jest prostszy w obsłudze.

W artykule:

  • Zapis strumienia tweetów do Elasticsearch w Logstash’u
  • Wizualizacje w Kibana (Xbox vs PlayStation)
  • Usunięcie tagów HTML dla keyword’a mechanizmem normalizacji
Czytaj dalej Analiza danych z Twitter dla leni w Elastic Stack (Xbox VS PlayStation)

PySpark ETL z MySQL i MongoDB do Cassandra

W Apache Spark/PySpark posługujemy się abstrakcjami, a faktyczne przetwarzanie dokonywane jest dopiero gdy chcemy zmaterializować wynik operacji. Do dyspozycji mamy szereg bibliotek, którymi możemy łączyć się z różnymi bazami i systemami plików. W tym artykule dowiesz się jak połączyć dane z MySQL i MongoDB, a następnie zapisać je w Apache Cassandra.

Czytaj dalej PySpark ETL z MySQL i MongoDB do Cassandra

5 sposobów na lokalne środowisko Apache Spark

Apache Spark to jedna z najpopularniejszych platform do rozproszonego przetwarzania i analizy danych. Choć kojarzona jest farmą serwerów, Hadoop’em i technologiami chmurowymi, z powodzeniem możesz odpalić ją na swojej maszynie. W tym wpisie dowiesz się kilku sposobów na konfiguracje deweloperskiego środowiska Apache Spark.

Czytaj dalej 5 sposobów na lokalne środowisko Apache Spark

Jak zacząć z Apache Spark i Cassandra

Apache Cassandra to specyficzna baza danych. Skaluje się (uwaga) liniowo. Ma to swoją cenę: specyficzne modelowanie tabel, konfigurowalna spójność i ograniczona analityka. Apple wykonuje miliony operacji na sekundę na ponad 160 tys. instancjach Cassandry. Gromadzi przy tym ponad 100 PB danych. Ograniczoną analitykę można „wyleczyć” wykorzystując Apache Spark i connector od DataStax i o tym jest ten wpis.

Czytaj dalej Jak zacząć z Apache Spark i Cassandra

MinIO – Big Data bez Hadoop/HDFS?

MinIO to rozproszony storage implementujący API AWS S3. Można go wdrożyć na środowiskach on-premises. Jest przygotowany pod Kubernetes. Stanowi ciekawą alternatywę dla środowisk opartych o HDFS i resztę ekosystemu Hadoop. W końcu Kubernetes staje się coraz ciekawszą alternatywą YARN-a dla Apache Spark. W tym wpisie zapoznamy się z lokalnie postawionym MinIO na docker-compose i wykonamy kilka operacji w Sparku.

Czytaj dalej MinIO – Big Data bez Hadoop/HDFS?